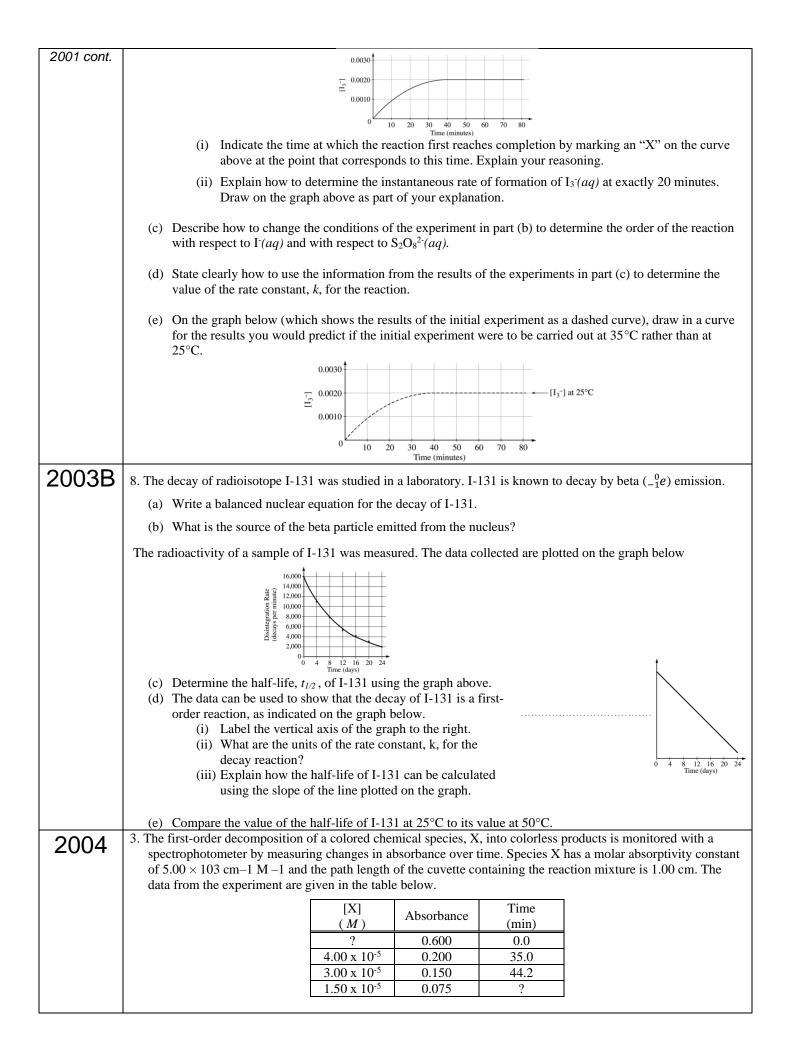
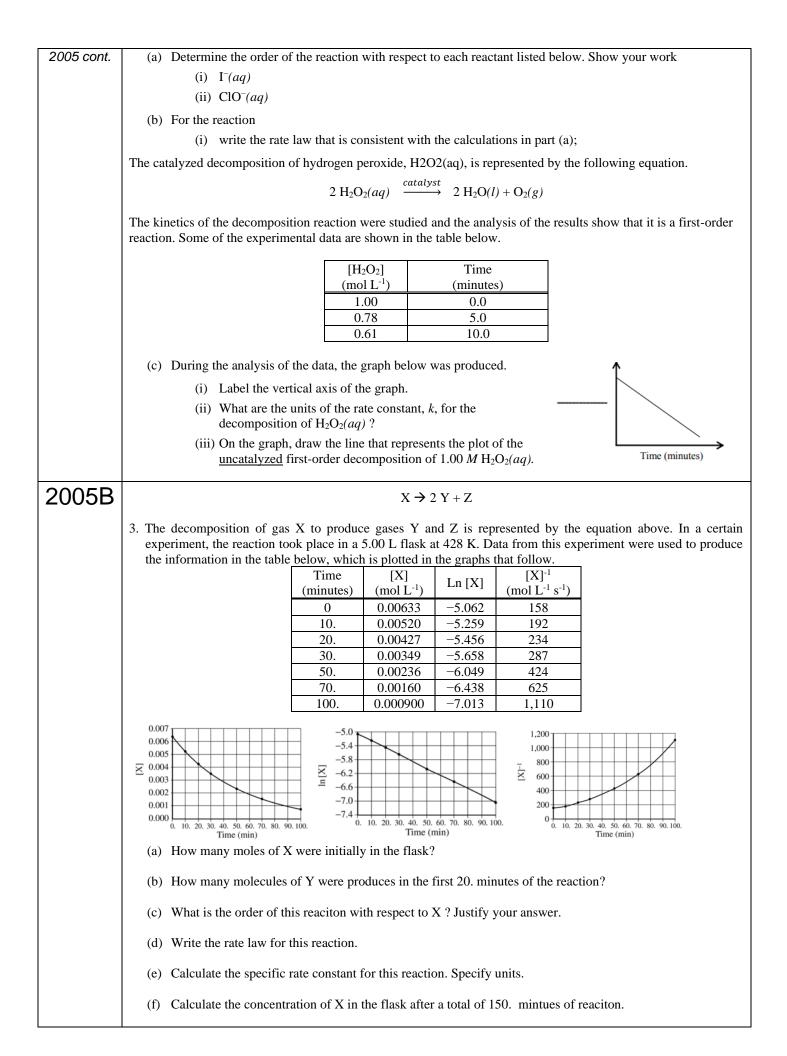
Worksheet #8

Name:

Period:


Seat#:

Directions: Show all work in a way that would earn you credit on the AP Test! This is always the rule! Grading rubrics posted in the Google Answer Key Drive. Check your work, correct in green pen after you try them yourself in an honest way! Don't peek at rubrics while you work! **USE BINDER PAPER, STAPLE TO YOUR WORKSHEET**. Clearly label work.


LONG ASSIGNMENT! DON'T WAIT UNTIL THE LAST MINUTE! BREAK IT INTO CHUNKS! SET A TIMER FOR 1.5 MIN PER FRQ PART AND SEE IF YOU FINISH ON TIME!

2008	3. Nitrogen monoxide gas, a product of the reaction above, can react with oxygen to produce nitrogen diox gas, as represented below.						
	$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{NO}_2(g)$						
	A rate study of the reaction yielded the data recorded in the table below.						
		Experiment	Initial Concentration of NO (mol L ⁻¹)	Initial Concentration of O ₂ (mol L ⁻¹)	Initial Rate of Formation of NO ₂ (mol L ⁻¹ s ⁻¹)		
		1	0.0200	0.0300	8.52 x 10 ⁻²		
		2	0.0200	0.0900	2.56 x 10 ⁻¹		
		3	0.0600	0.0300	7.67 x 10 ⁻¹		
	(e) W	(i) NO (ii) O_2 (rite the expression)	explaining or showing ho on for the rate law for the ne of the rate constant for t	reaction as determined fro	m the experimental data.		
2008B	$A(g) + B(g) \rightarrow C(g) + D(g)$						
	2. For the gas-phase reaction represented above, the following experimental data were obtained.						
			Initial Concentration	Initial Concentration	Initial Reaction Rate		
		Experiment	of A (mol L ⁻¹)	of B(mol L ⁻¹)	$(mol L^{-1} s^{-1})$		
		Experiment 1			(mol L ⁻¹ s ⁻¹) 6.67 x 10 ⁻⁴		
		1 2	of A (mol L ⁻¹) 0.033 0.034	of B(mol L ⁻¹) 0.034 0.137	6.67 x 10 ⁻⁴ 1.08 x 10 ⁻²		
		1 2 3	of A (mol L ⁻¹) 0.033 0.034 0.136	of B(mol L ⁻¹) 0.034 0.137 0.136	6.67 x 10 ⁻⁴ 1.08 x 10 ⁻² 1.07 x 10 ⁻²		
		1 2	of A (mol L ⁻¹) 0.033 0.034	of B(mol L ⁻¹) 0.034 0.137	6.67 x 10 ⁻⁴ 1.08 x 10 ⁻²		
		$ \begin{array}{c} 1\\ 2\\ 3\\ 4 \end{array} $ etermine the orde	of A (mol L ⁻¹) 0.033 0.034 0.136	of B(mol L ⁻¹) 0.034 0.137 0.136 0.233 pect to reactant A. Justify y	$ \begin{array}{r} 6.67 \times 10^{-4} \\ \overline{)} 1.08 \times 10^{-2} \\ \overline{)} 1.07 \times 10^{-2} \\ \overline{)} \\ your answer. $		
	(b) De	1 2 3 4 etermine the orde	of A (mol L ⁻¹) 0.033 0.034 0.136 0.202 er of the reaction with resp	of B(mol L ⁻¹) 0.034 0.137 0.136 0.233 pect to reactant A. Justify y	$ \begin{array}{r} 6.67 \times 10^{-4} \\ \overline{)} 1.08 \times 10^{-2} \\ \overline{)} 1.07 \times 10^{-2} \\ \overline{)} \\ your answer. $		
	(b) De (c) W	1 2 3 4 etermine the orde	of A (mol L ⁻¹) 0.033 0.034 0.136 0.202 er of the reaction with resp er of the reaction with resp	of B(mol L ⁻¹) 0.034 0.137 0.136 0.233 vect to reactant A. Justify y	6.67 x 10 ⁻⁴ 1.08 x 10 ⁻² 1.07 x 10 ⁻² ? your answer. your answer.		
	(b) De (c) W (d) De	$\frac{1}{2}$ $\frac{3}{4}$ etermine the order etermine the order rite the rate law friction of the rate law frite law friction of the rate law frictio	$\frac{\text{of A (mol L^{-1})}}{0.033}$ $\frac{0.034}{0.136}$ 0.202 er of the reaction with resp er of the reaction with resp for the overall reaction.	of B(mol L ⁻¹) 0.034 0.137 0.136 0.233 pect to reactant A. Justify y pect to reactant B. Justify y	6.67 x 10 ⁻⁴ 1.08 x 10 ⁻² 1.07 x 10 ⁻² ? your answer. your answer.		
	(b) De (c) W (d) De (e) Ca	1 2 3 4 etermine the order etermine the order rite the rate law freetermine the value etermine the value etermine the initia e following mechanism	of A (mol L ⁻¹) 0.033 0.034 0.136 0.202 er of the reaction with resp er of the reaction with resp for the overall reaction. the of the rate constant, k, f l reaction rate for experiment hanism has been proposed	of B(mol L ⁻¹) 0.034 0.137 0.136 0.233 Pect to reactant A. Justify y pect to reactant B. Justify y for the reaction. Include under the reaction. Include under the second secon	$ \begin{array}{r} 6.67 \times 10^{-4} \\ \overline{)} 1.08 \times 10^{-2} \\ \overline{)} 1.07 \times 10^{-2} \\ ? $ your answer. your answer.		
	(b) De (c) W (d) De (e) Ca	1 2 3 4 etermine the orde etermine the orde rite the rate law t etermine the valu alculate the initia e following mech Step 1:	of A (mol L ⁻¹) 0.033 0.034 0.136 0.202 er of the reaction with resp er of the reaction with resp for the overall reaction. the of the rate constant, k, f l reaction rate for experiment	of B(mol L ⁻¹) 0.034 0.137 0.136 0.233 Pect to reactant A. Justify y pect to reactant B. Justify y for the reaction. Include under the reaction. Include under the reaction.	$ \begin{array}{r} 6.67 \times 10^{-4} \\ \overline{)} 1.08 \times 10^{-2} \\ \overline{)} 1.07 \times 10^{-2} \\ ? $ your answer.		
	(b) De (c) W (d) De (e) Ca (f) Th	1 2 3 4 etermine the order rite the rate law frite the rate law frite etermine the value alculate the initia e following mech Step 1: Step 2:	of A (mol L ⁻¹) 0.033 0.034 0.136 0.202 er of the reaction with resp er of the reaction with resp for the overall reaction. the of the rate constant, k, f 1 reaction rate for experiment hanism has been proposed $B + B \rightarrow E + D$ slov	of B(mol L ⁻¹) 0.034 0.137 0.136 0.233 ect to reactant A. Justify y pect to reactant B. Justify y for the reaction. Include under the reaction. Include under the reaction.	$ \begin{array}{r} 6.67 \times 10^{-4} \\ \overline{)} 1.08 \times 10^{-2} \\ \overline{)} 1.07 \times 10^{-2} \\ ? $ your answer.		

1999B		2	$NO(g) + Br_2(g) \rightarrow$	• 2 NOBr(g)					
	3. A rate study of the reaction represented above was conducted at 25°C. The dtaa that were obtained are s the table below.								
	Experiment	Initial [NO] (mol	L ⁻¹) Initial [Bi	r ₂] (mol L ⁻¹)	Initial Rate of Appearance of NOBr (mol L ⁻¹ s ⁻¹)]			
	1	0.0160	0.0	0120	3.24 x 10 ⁻⁴				
	2	0.0160	0.0	0240	6.38 x 10 ⁻⁴				
	3	0.0320	0.0	0060	6.42 x 10 ⁻⁴				
	(a) Calculate the initial rate of disappearance of $Br_2(g)$ in experiment 1.								
	(b) Determine the order of the reaction with respect to each reactant. $Br_2(g)$ and $NO(g)$. In each case, explain your reasoning.								
	(c) For the reaction,(i) write the rate law that is consistent with the data, and								
	(ii) calculate the value of the specific rate constant, k, and specify units.								
	(d) The following mechanism was proposed for the reaction:								
	Step 1: $\operatorname{Br}_2(g) + \operatorname{NO}(g) \operatorname{NOBr}_2(g)$ slow Step 2: $\operatorname{NOBr}_2(g) + \operatorname{NO}(g) 2 \operatorname{NOBr}(g)$ fast								
	Is this mechanism	n consistent with the g	given experimenta	l ovservations	? Justify your answer.				
2003	5 Br ⁻ (<i>aq</i>) + BrO ₃ ⁻ (<i>aq</i>) + 6 H ⁺ (<i>aq</i>) \rightarrow 3 Br ₂ (<i>l</i>) + 3 H ₂ O(<i>l</i>) 3. In a study of kinetics of the reaction represented above, the following data were obtained at 298 K.								
	Experin	ent Initial [Br ⁻] (mol L ⁻¹)	Initial [BrO ₃ ⁻] (mol L ⁻¹)	Initial [H ⁺] (mol L ⁻¹)	Initial Rate of Appearance of Br_2 (mol L ⁻¹ s ⁻¹)				
	1	0.00100	0.00500	0.100	2.50 x 10 ⁻⁴				
	2	0.00200	0.00500	0.100	5.00 x 10 ⁻⁴				
	3	0.00100	0.00750	0.100	3.75 x 10 ⁻⁴				
	4	0.00100	0.01500	0.200	3.00 x 10 ⁻³				
	(a) From the data reasoning.(i) Br⁻	a given above, determ	ine the order of th	e reaction for	each reactant listed below. Show	w your			
	(i) BI (ii) BrO_3^-								
	(ii) H ⁺								
	(b) Write the rate	law for the overall re	eaciton.						
	(c) Determine th				298 K. Include the correct unit	s.			
2001	 3 I⁻ (aq) + S₂O₈²⁻ (aq) → I₃⁻ (aq) + 2 SO₄²⁻ (aq) 6. Iodide ion, I- (aq), reacts with peroxydisulfate ion, S₂O₈²⁻(aq), according to the equation above. Assume that the reaction goes to completion. (a) Identify the type of reaction (combustion, disproportionation, neutralization, oxidation-reduction, precipitation, etc.) represented by the equation above. Also, give the formula of another substance that could convert I⁻ (aq) to I₃⁻ (aq). 								
						that the			
						that			
		ent, equal volumes of of $I_3^-(aq)$ over the following t			$S_2O_8^{2-}(aq)$ are mixed at 25°C. The graph below.	Гhe			

2004 cont.	(a) Calculate the initial concentration of the colored species.					
	(b) Calculate the rate constant for the first-order reaction using the values given for concentration and time. Include units with your answer.					
	(c) Calculate the number of minutes it takes for the absorbance to drop from 0.600 to 0.075.					
	(d) Calculate the half-life of the reaction. Include units with your answer.					
	(e) Experiments were performed to determine the value of the rate constant for this reaction at various temperatures. Data from these experiments were used to produce the graph below, where <i>T</i> is temperature. This graph can be used to determine the activation energy, E_a , of the reaction.					
	(i) Label the vertical axis of the graph.					
	(ii) Explain how to calculate the activation energy from this graph.					
2004B						
		$2 H_2O_2(aq)$	$(l) \rightarrow 2 \operatorname{H}_2\operatorname{O}(l) + \operatorname{O}_2(g)$			
	3. Hydrogen peroxide decomposes according to the equation above.					
	(a) An aqueous solution of H ₂ O ₂ that is 6.00 percent H ₂ O ₂ by mass has a density of 1.03 g mL ⁻¹ . Calculate each of the following.					
	(i) The original number of moles of H_2O_2 in a 125 mL sample of the 6.00 percent H_2O_2 solution					
	(ii) The number of moles of $O_2(g)$ that are produced when all of the H_2O_2 in the 125 mL sample decomposes					
	(b) The graphs below show results from a study of the decomposition of H_2O_2 .					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
	0 0 0 0 800 1,600 2,400 3,200 Time (min) Time (min) Time (min)					
	Time (min)(i) Write the rate law for the reaction. Justify your answer.					
	(ii) Determine the half-life of the reaction.					
	(iii) Calcula	ate the volue of the rate con	nstant, k. Include appropria	ate units in your answer.		
0005		nine $[H_2O_2]$ afer 2,000 min questions related to the kin				
2005	5. Thiswel the following	•				
		$I^{-}(aq) + ClO^{-}(aq)$	$aq) \xrightarrow{\mathrm{OH}^-} \mathrm{IO}^-(aq) + \mathrm{Cl}^-(aq)$)		
				sic solution according to the shown in the following table		
		[I ⁻]	[ClO ⁻]	Initial Rate of Formation		
	Experiment	$(mol L^{-1})$	(mol L ⁻¹)	of IO ⁻ (mol L ⁻¹ s ⁻¹)		
	1 2	0.017 0.052	0.015	0.156 0.476		
	3	0.032	0.015	0.596		

2006	6.(d) Consider the four reaction-energy profile diagrams shown below.
	Potential Energy Beaction Progress Potential Energy Reaction Progress Potential Energy Reaction Progress Potential Energy Reaction Progress
	Diagram 1 Diagram 2 Diagram 3 Diagram 4
	 (i) Identify the two diagrams that could represent a catalyzed and an uncatalyzed reaction pathway for the same reaction. Indicate which of the two diagrams represents the catalyzed reaction pathway for the reaction.
	 (ii) Indicate whether you agree or disagree with the statement in the box below. Support your answer with a short explanation.
	Adding a catalyst to a reaction mixture adds energy that causes the reaction to proceed more quickly.
in	hink about the types of mistakes you made, things you need to restudy, things that tricked you, etc. One of the most nportant skills to develop in AP Chem is self reflection and not making the same mistakes. The joke is – you should
al	ways make NEW mistakes, not the SAME mistakes 😳